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Abstract

Background: Autism spectrum disorder (ASD) is heritable and neurodevelopmental with unknown causes. The
serotonergic and oxytocinergic systems are of interest in autism for several reasons: (i) Both systems are implicated
in social behavior, and abnormal levels of serotonin and oxytocin have been found in people with ASD; (ii)
treatment with selective serotonin reuptake inhibitors and oxytocin can yield improvements; and (iii) previous
association studies have linked the serotonin transporter (SERT; SLC6A4), serotonin receptor 2A (HTR2A), and oxytocin
receptor (OXTR) genes with ASD. We examined their association with high functioning autism (HFA) including
siblings and their interaction.

Methods: In this association study with HFA children (IQ > 80), siblings, and controls, participants were genotyped
for four single nucleotide polymorphisms (SNPs) in OXTR (rs2301261, rs53576, rs2254298, rs2268494) and one in
HTR2A (rs6311) as well as the triallelic HTTLPR (SERT polymorphism).

Results: We identified a nominal significant association with HFA for the HTTLPR s allele (consisting of S and LG
alleles) (p = .040; odds ratio (OR) = 1.697, 95% CI 1.191–2.204)). Four polymorphisms (HTTLPR, HTR2A rs6311, OXTR
rs2254298 and rs53576) in combination conferred nominal significant risk for HFA with a genetic score of ≥4
(OR = 2.09, 95% CI 1.05–4.18, p = .037). The resulting area under the receiver operating characteristic curve was 0.595
(p = .033).

Conclusions: Our findings, combined with those of previous reports, indicate that ASD, in particular HFA, is
polygenetic rather than monogenetic and involves the serotonergic and oxytocin pathways, probably in
combination with other factors.

Keywords: Autism spectrum disorder, High functioning autism, Oxytocin receptor, Polymorphism, Serotonin
receptor 2A, Serotonin transporter
Background
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by impairments in social interac-
tions and communication and by repetitive behaviors
[1,2]. An ASD diagnosis can be made very early in child-
hood, but the disorder is a lifelong condition. The preva-
lence is estimated to be 0.6–1.0% [3-6], with a male:female
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ratio of 4:1 [6]. Twin studies give an estimated heritability
of 70–90% [7-10], implicating genetics as a main factor in
the etiology, in addition to environmental factors. Some
ASD cases are caused by single gene defects [11-13], but
for most cases, the genetic causes are unknown.
Both the serotonergic and oxytocinergic systems seem

to play a role in ASD and social behaviors [14]. The sero-
tonergic system is of special interest in autism for several
reasons: (i) In up to 30% of people with ASD, elevated
whole blood serotonin (5-HT) levels have been reported
[15]; (ii) ASD-related sensory motor behaviors are in-
creased after depletion of tryptophan, a precursor in 5-HT
synthesis [16]; (iii) reduced serotonin receptor 2A
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(HTR2A) and serotonin transporter (SERT, also known as
5-HTT) binding in certain brain regions of people with
ASD has been identified [17-19]; (iv) selective serotonin
reuptake inhibitors (SSRIs) can improve abnormal recipro-
cal social interaction and repetitive behaviors in some
cases [20-23]; and (v) several polymorphisms in the
HTR2A gene (NCBI Gene ID: 3356) and the SERT gene
(also known as SLC6A4; NCBI Gene ID: 6532) have sug-
gested association with ASD [24-29]. In the following, we
focus on these two candidate genes: The promoter se-
quence of SERT contains a polymorphic region (HTTLPR)
with a short allele (S) and a long allele (L) that is 44 bp
longer and can contain an additional single nucleotide
polymorphism (SNP) (rs25531), making the locus triallelic
(LA, LG and S) [30,31]. These polymorphisms affect SERT
expression, with the S and LG alleles (here denoted collect-
ively as the s allele, while LA as the l allele) reducing tran-
scriptional efficiency [30,31]. Still, some inconsistent results
appear with s allele or l allele associations with ASD de-
pending on ethnicity or diagnostic inclusion as found in a
meta-analysis [24]. Association studies of HTR2A have con-
centrated mostly on three non-coding SNPs (rs6311,
rs6313, rs6314) [26-28,32].
Similarly, the oxytocinergic system has attracted attention

for similar reasons: (i) Low plasma oxytocin levels have
been observed in autistic boys [33,34]; (ii) elevated oxytocin
precursor levels in ASD children have been reported [33];
and (iii) administration of oxytocin has improved retention
of social information and decreased repetitive behaviors in
ASD as well as in high functioning autism (HFA) [35-38].
Nonetheless, genetic studies have mainly failed to associate
the oxytocin gene with autism; however, several studies have
reported an association with the oxytocin receptor gene
(OXTR; NCBI Gene ID: 5021), although inconsistently
[39-43]. In particular the OXTR polymorphism: rs2301261,
rs53576, rs2254298 and rs2268494, were studied in ASD
and social behavior [40,42-44].
Recent reports have indicated some interactions among

5-HT, serotonergic components, and oxytocin [14,45,46].
In the first report by Hammock et al. [45], plasma oxytocin
and 5-HT levels were negatively correlated with each other,
and this relationship was most prominent in children under
age 11 years. Thanseem and colleagues [46], on the other
hand, found that transcription factor–like specificity protein
1 expression in brains of ASD participants increased in par-
allel with dysregulation of the transcription of HTR2A
(down-regulation) and OXTR (up-regulation), which might
further reveal downstream pathways mediating brain devel-
opmental disorders. Moreover, Dolen et al. [14] could dem-
onstrate in mice models that the rewarding properties of
social interactions require the coordinated activity of oxyto-
cin and 5-HT in the nucleus accumbens, and this oxytocin-
induced synaptic plasticity requires activation of nucleus
accumbens serotonin receptor 1B.
Because previous association studies of SERT, HTR2A,
and OXTR have led to controversial findings, but the men-
tioned genes seem to interact with one another, we
attempted to replicate these associations analyzing ASD
children (high functioning), their siblings, and controls
with no clinical diagnoses. In contrast to other studies, we
included only patients with HFA in our study, eliminating
confounding parameters such as IQ. Sibships transmission
analysis was included to enhance further the case–control
findings. Additionally, we tested for interaction among the
three genes, since these were reported to be involved in
ASD and even further to interact with each other, on the
assumption that neurodevelopmental disorders are poly-
genetic rather than monogenetic.
Methods
Participants
The study was approved by the ethics committee of the
Canton Zurich, Switzerland (E-36/2009). Parents of all
participants gave their written consent after being in-
formed about the aim of the study. All participants (76
with HFA, 78 siblings, and 99 controls) were Caucasians
between 5 and 17 years of age collected in the Department
of Child and Adolescent Psychiatry at the University of
Zurich. In all patients diagnosis was confirmed using
the Autism Diagnosis Observation Schedule [47] and
the Autism Diagnosis Interview [48]. Inclusion criteria
for all children with high-functioning ASD (64 males
and 12 females) was IQ of at least 80 from at least one
of two IQ tests (see below) according to strict HFA def-
inition [49,50] and all met the International Statistical
Classification of Diseases and Related Health Problems,
10th Revision (ICD-10) [51] criteria for pervasive devel-
opmental disorder, including three with childhood aut-
ism, 27 with atypical autism, and 46 with Asperger
syndrome. Persons with neurological disorders includ-
ing epilepsy or known genetic diseases linked to autism
were excluded.
The siblings of the ASD group (33 males and 45 fe-

males) did not have an ASD diagnosis or other severe
psychiatric disorders according to screening question-
naires (see below). For the control group, only children
without any clinical diagnosis were included in the study
(77 males and 22 females).
Additionally, all participants were screened for psycho-

pathology with the following parent reports: Child Behav-
iour Checklist [52]; Social Responsiveness Scale [53]; Social
Communication Questionnaire [54]; Conners [55]; and the
German ADHD rating scale, FBB-HKS [56]. Intelligence
was measured with the Snijders-Oomen Non-Verbal
Intelligence Test 5.5-17 [57] and the Culture Fair Test [58].
Age and IQ distribution for the different study groups is
listed in Table 1.



Table 1 Distribution of age, sex, and IQ for each study
group

Mean SD Range Total

Age (in y) ASD 11.24 3.10 5–17 76

Siblings* 10.53 3.25 6–17 78

Controls 11.77 3.01 6–17 99

IQ, SON ASD 108.68 16.03 80–140 75

Siblings 109.75 12.36 82–135 77

Controls 112.19 12.53 86–140 99

IQ, CFT ASD 105.16 13.88 70–145 68

Siblings 104.55 10.65 85–142 73

Controls 106.71 10.96 85–133 97

Male Female Ratio (M/F) Total

(% total) (% total)

Sex ASD 64 (84.2) 12 (15.8) 5.33 76

Siblings*+ 33 (42.3) 45 (57.7) 0.733 78

Controls 77 (77.8) 22 (22.2) 3.50 99

Abbreviations: ASD autism spectrum disorder, SD standard deviation,
SON Snijders-Oomen Non-Verbal Intelligence Test 5.5-17, CFT Culture Fair Test,
M Male, F Female.
Statistical analysis was conducted using χ2 tests. *p < .05 versus controls;
+p < .05 versus ASD.
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Genotyping analysis
Saliva samples for DNA isolation were collected from
all recruited individuals using the Oragene DNA kit
(DNA Genotek; Kanata, Canada). DNA was isolated
from saliva according to the manufacturer’s protocol
(Oragene™ DNA Purification Protocol, DNA Genotek).
For rs2301261, rs2254298, rs2268494, and rs6311 (Assay
ID: C_15756091_30; C_15981334_10; C_15874471_10 and
C_8695278_10, respectively), genotyping was performed
using TaqMan® SNP Genotyping Assays (Applied Biosys-
tems; Foster City, CA, USA). PCR was carried out on a
CFX384™ Real-Time System (Bio-Rad; Hercules, CA,
USA) in a 5 μl (10 μl for rs6311) volume using TaqMan®
2× Universal PCR Master Mix No AmpErase® UNG (Ap-
plied Biosystems) and 10 ng (22.5 ng for rs6311) of DNA.
Initial enzyme activation was carried out at 95°C for
10 min, followed by 40 cycles at 92°C for 15 s and 60°C
for 1 min.
For rs25531 and HTTLPR analysis, the restriction

fragment length polymorphism method was used. Amp-
lification was carried out on a CFX384™ Thermal Cycler
(Bio-Rad) in a 10 μl (rs25531) or 25 μl (HTTLPR) vol-
ume using GoTaq® Green Master Mix 2× (Promega;
Madison, WI, USA).
For rs25531, the same primers as described previously

were used [59]. PCR conditions were an initial denaturation
at 95°C for 2 min, followed by 40 cycles at 95°C for 30 s,
64°C for 40 s, and 72°C for 40 s with a final extension at
72°C for 5 min. The PCR product was digested overnight at
37°C with 10 U BamHI (Fermentas; Burlington, Canada) in
a 20 μl volume containing 2 μl of the corresponding en-
zyme buffer. Fragments were visualized on a 3% agarose
gel. The fragment size of the undigested G allele is
340 bp whereas the A allele is restricted to bands of 110
and 230 bp.
For HTTLPR, the primer sequences were 5′-TGC CGC

TCT GAA TGC CAG CAC-3′ and 5′-GGG ATT CTG
GTG CCA CCT AGA CG-3′. PCR conditions were simi-
lar to those for rs53576, but only 30 cycles were carried
out at 95°C for 45 s, 66.5°C for 45 s, and 72°C at 1 min.
Fifteen microliters of PCR product were run on a 3% agar-
ose gel to distinguish the L allele (463 bp) and S allele
(419 bp). The remaining PCR product was digested simi-
larly as described above but with 20 U MspI (New England
Biolabs, Ipswich, MA, USA). Visualization on 3% agarose
gel allowed distinction of the G allele (bands of 61, 66, 162,
174, and 292 bp) from the A allele (61, 66, 292, and 336 bp)
of rs25531.

Statistical analysis
Each study group and the total sample were tested for de-
viation from Hardy–Weinberg equilibrium for all poly-
morphisms, and no significant departures were found (see
Additional file 1: Table S1). Differences in genotype, allele,
and carrier frequencies among the groups (HFA, controls,
siblings) as well as between two HFA subgroups (atypical
autism and Asperger autism) and the control group were
tested with the χ2 test. A sibship disequilibrium test was
performed for each polymorphism according to Horvath
and Laird [60].
Gene–gene interactions were studied by comparing each

combination of two polymorphisms. For each combin-
ation, a three-dimensional contingency table with “poly-
morphism 1 × polymorphism 2 × study group” was built,
and a three dimensional χ2 test was performed. All ana-
lyses were done with Matlab version 7.10.0 (MathWorks).
Additionally, a receiver operating characteristic (ROC)

curve analysis was performed for the various combinations
of genetic scores sums, simulating their polygenetic effects
on the risk for ASD [61]. Genetic scores attributed to the
allelic variations are listed in Additional file 1: Table S2.
The area under the curve and its significance were calcu-
lated using SPSS version 20 (IBM Corp.).
The nominal significance threshold was set to 5% and

the adjusted significance according Bonferroni for mul-
tiple testing was set to 0.8%. Power analysis was per-
formed using G*Power version 3.1.6 [62,63].
Results
Association of single SNPs with autism diagnosis
To investigate whether oxytocinergic and serotonergic
system genes are associated with HFA, 253 children
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were genotyped for polymorphisms in the OXTR,
HTR2A, and SERT. Genotype and minor allele frequen-
cies for all six polymorphisms are summarized in
Table 2.
HTTLPR triallelic polymorphism allele frequencies

were nominal significantly associated with Asperger
diagnosis (p = .040; odds ratio (OR) = 1.697 (95% CI
1.191–2.204)) with the s allele as a risk allele (Table 3).
The absolute genotype frequencies for the Asperger
group were 17, 23, and 6 for ss, sl, and ll genotypes, re-
spectively, for a relative s allele frequency of 0.619 for
the Asperger group compared to 0.490 in the control
group. Furthermore, merging l carriers led to a trend
for association (p = .073; OR = 1.998 (95% CI 1.234–
2.763)). No association of the HTR2A and OXTR with
autism was observed.
Forty “mixed” sibships were included (sibships with af-

fected and unaffected siblings). No significant transmis-
sion disequilibrium was detected for any of the tested
polymorphisms (Table 4).
Table 2 Genotype distribution, genotype frequencies, and mi
siblings, and control groups

Polymorphism Genotype distribution

HTTLPR triallelic1 ss sl

ASD 24 (0.316) 38 (0.5

Siblings 16 (0.208) 43 (0.5

Controls 22 (0.248) 51 (0.5

HTR2A rs63112 GG GA

ASD 21 (0.276) 34 (0.4

Siblings 23 (0.295) 35 (0.4

Controls 29 (0.299) 47 (0.4

OXTR rs2301261 CC CT

ASD 65 (0.855) 11 (0.1

Siblings 67 (0.859) 11 (0.1

Controls 84 (0.848) 15 (0.1

OXTR rs535761 AA AG

ASD 7 (0.092) 34 (0.4

Siblings 7 (0.091) 37 (0.4

Controls 9 (0.093) 33 (0.3

OXTR rs2254298 AA AG

ASD 0 12 (0.1

Siblings 0 13 (0.1

Controls 0 21 (0.2

OXTR rs2268494 AA AT

ASD 0 13 (0.1

Siblings 1 (0.013) 9 (0.11

Controls 0 17 (0.1

Abbreviations: ASD autism spectrum disorder, OXTR oxytocin receptor, HTR2A seroto
MAF minor allele frequency. 1Genotyping failed repeatedly for one sibling and two
Analysis of gene–gene interactions and the polygenetic
risk for ASD
Testing for gene–gene interactions by a χ2-test revealed
nominal significant association of HTTLPR and HTR2A
(rs6311) with ASD, as well as of the two OXTR SNPs
rs53576 and rs2268494 (Additional file 1: Table S3). Three
SNPs on the OXTR showed strong linkage disequilibrium;
between rs2301261 and rs2254298 (p = 4.58E-11) and be-
tween rs2254298 and rs2268494 (p = .005); probably caus-
ing high transmission of these variant combinations.
Since there is evidence in the literature for the involve-

ment of oxytocinergic and serotonergic systems and their
interactions with one another, we investigated the poly-
genetic gene scores of these variants and the risk for HFA.
The strongest result for a polygenetic risk was with the
combination of the polymorphisms HTTLPR, HTR2A
rs6311, and OXTR rs2254298 and rs53576 (for other com-
binations, see Additional file 1: Table S4). A nominally sig-
nificant ROC curve (p = .033) was obtained for this
combination (Figure 1). The optimal point is at ~80%
nor allele frequencies for autism spectrum disorder (ASD),

(Genotype frequency) MAF (Allele)

ll

00) 14 (0.184) 0.434 (l)

58) 18 (0.234) 0.487 (s)

26) 24 (0.247) 0.490 (s)

AA A

47) 21 (0.276) 0.500

49) 20 (0.256) 0.481

85) 21 (0.216) 0.459

TT T

45) 0 0.072

41) 0 0.071

52) 0 0.076

GG A

47) 35 (0.461) 0.316

81) 33 (0.429) 0.331

40) 55 (0.567) 0.263

GG A

58) 64 (0.842) 0.079

67) 65 (0.833) 0.083

12) 78 (0.788) 0.106

TT A

71) 63 (0.829) 0.086

5) 68 (0.872) 0.071

72) 82 (0.828) 0.086

nin receptor 2A, HTTLPR serotonin-transporter–linked polymorphic region,
controls. 2Genotyping failed repeatedly for two controls.



Table 3 Statistical association analysis between autism spectrum disorder (ASD) or its subgroups (atypical and Asperger)
compared to controls or siblings with all six polymorphisms

p values

Polymorphism AA vs. controls AS vs. controls ASD vs. controls ASD vs. siblings

Genotype frequencies

HTTLPR triallelic 0.926 0.110 0.350 0.301

HTR2A rs6311 0.720 0.299 0.661 0.949

OXTR rs2301261 0.595 0.731 0.901 0.948

OXTR rs53576 0.524 0.280 0.334 0.914

OXTR rs2254298 0.460 0.592 0.363 0.883

OXTR rs2268494 0.870 0.974 0.991 0.388

Allele frequencies

HTTLPR triallelic 0.708 0.040 0.160 0.168

HTR2A rs6311 0.591 0.410 0.446 0.736

OXTR rs2301261 0.609 0.743 0.905 0.950

OXTR rs53576 0.307 0.464 0.280 0.774

OXTR rs2254298 0.486 0.614 0.390 0.888

OXTR rs2268494 0.877 0.975 0.991 0.623

Carrier frequencies [Carrier]

HTTLPR triallelic [s] 0.787 0.108 0.319 0.451

HTTLPR triallelic [l] 0.725 0.073 0.189 0.129

HTR2A rs6311 [C] 0.949 0.158 0.362 0.780

HTR2A rs6311 [T] 0.433 0.948 0.744 0.799

OXTR rs53576 [G] 0.776 0.579 0.988 0.980

OXTR rs53576 [A] 0.258 0.216 0.164 0.691

In the subgroup analysis the three childhood autism were not included in either AA or AS subgroup. Abbreviations: AA atypical autism, AS Asperger syndrome,
ASD autism spectrum disorder, OXTR oxytocin receptor, HTR2A serotonin receptor 2A, HTTLPR serotonin-transporter–linked polymorphic region, vs. versus,
Bold nominal significant.

Nyffeler et al. Journal of Molecular Psychiatry 2014, 2:1 Page 5 of 9
http://www.jmolecularpsychiatry.com/content/2/1/1
sensitivity and ~35% specificity or ~35% sensitivity
with ~80% specificity. A genetic score cutoff of 4 or
more, indicating more risk variants, resulted in an OR =
2.090 (95% CI 1.045–4.179, p = .037).

Discussion
ASD is a highly heritable neurodevelopmental disorder
with suggested involvement of the serotonergic and oxy-
tocinergic systems, but up to now, no clear association
Table 4 Results of the sibship disequilibrium test

Polymorphism Allele b c p

HTTLPR triallelic l 8 12 .503

HTR2A rs6311 A 6 10 .455

OXTR rs2301261 C 5 1 .219

OXTR rs53576 T 6 8 .791

OXTR rs2254298 G 1 2 1.000

OXTR rs2268494 T 2 4 .688

Abbreviations: OXTR oxytocin receptor, HTR2A serotonin receptor 2A, HTTLPR
serotonin-transporter–linked polymorphic region. b =mentioned allele more
often transmitted to affected siblings. c = mentioned allele more often
transmitted to unaffected siblings. p = two-tailed p value.
of polymorphisms with ASD has been found with a
high effect size. Here, we evaluated children with HFA,
their siblings, and controls using genotyping results for
four SNPs in OXTR, one in HTR2A, and the HTTLPR
length polymorphism. Our analysis showed that the s
allele of the HTTLPR polymorphism was nominal sig-
nificantly associated with HFA; however, it should be
denoted that due to sample size the p-value is rather
borderline. We did not observe any significant associ-
ation in the selected SNPs for the HTR2A and OXTR
variants with HFA.
Regarding association with HTR2A, our findings are

consistent with some previous studies [26,28,32] reporting
no association with autism. Only one study involving pa-
tients “rather severely affected from autism” [27] reported
a link, but no information regarding IQ values was given.
Association studies of HTTLPR with ASD have led to

contradictory results. Several have identified the S allele
with ASD [25,29,64,65] while others associated the L al-
lele with ASD [32,66,67] or found no association at all
[68-71]. Our results rather support the first group. In
our analysis of the HTTLPR, however, we used a
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Figure 1 Receiver operating characteristic curve for the candidate polymorphism markers, serotonin transporter promoter length
polymorphism (HTTLPR), serotonin receptor 2A (HTR2A) rs6311, oxytocin receptor (OXTR) rs2254298, and OXTR rs53576. AUC = 0.595,
p = .033, 95% CI: 0.509–0.681. Sensitivity of ~80% with specificity of ~35% or sensitivity of ~35% with specificity of ~80%.
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triallelic mode in which the A and G alleles in the L al-
lele were taken into account.
In accordance with previous reports [42,72] and a recent

meta-analysis finding [44] in which no association be-
tween the OXTR polymorphisms rs53576 and rs2301261
with ASD was found, we also could not confirm one with
HFA. Lerer et al. [40] identified an association between
OXTR rs2268494 and autism diagnosis, but only when IQ
was entered as a covariate. In our study, although our
ASD population was stratified to IQ equal or larger than
eighty, we could not confirm such a link. Concerning
OXTR rs2254298, we also could not confirm an associ-
ation with HFA, in contrast to several previous studies
[40,42,59,73]. Nevertheless, our finding supports the re-
cent meta-analysis in which no association could be
proven accept for the biological functioning domain [44].
Although only one SNP singly was associated with

HFA in this work, the gene–gene interaction study
linked combinations of the tested polymorphisms with
HFA. Similarly, such gene interaction study between
HTTLPR and OXTR was reported in prediction of ma-
ternal sensitivity [74], pointing to their possible influ-
ence in social behavior. Furthermore, the ROC analysis
showed that four of the tested SNPs together led to
sensitivity of 80% but at the cost of low specificity
(35%) or vice versa.
The limitations of our study include the relatively
small minor allele frequency for three of the OXTR poly-
morphisms and the sample size. Power analysis revealed
that the power was sufficient only for a medium or large
effect size. The power for small effect sizes (i.e., of 0.1)
was below 20% for polymorphisms with two genotypes
and about 30% if all three genotypes were present.
The strength of our study is the narrow phenotype re-

garding the intellectual and language ability and cogni-
tive function. Most previous investigations have analyzed
samples consisting of the complete spectrum of autism
whereas in our investigation all individuals were diag-
nosed with HFA. In the past, 50–70% of autistic children
were classified as intellectually disabled, but those with
Asperger have, by definition, an IQ in the normal range
[75] and typical language development.
As far as we know, only one study has investigated an

association of OXTR in HFA, finding a weak association
[72]. Of the 22 studied SNPs, one was nominally associ-
ated with autism diagnosis (p = .0185), which would not
hold for Bonferroni correction for multiple testing [72].
Further research involving people with HFA has yielded
evidence for an association with the oxytocin gene itself
[76]; the CD38 gene [77], whose gene product is related
to oxytocin secretion [78-80]; and the syntaxin 1A gene
[81], whose gene product affects SERT function [82].
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These findings indicate that some components of the
serotonergic and oxytocinergic systems, other than
those already extensively studied, might be involved in
HFA. Additionally, similarly to the report by Carayol
et al. [61], who combined the low-risk genes PITX,
ATP2B2, SLC25A12, and EN2, we could show that a
combination of four polymorphisms (HTTLPR, HTR2A
rs6311, and OXTR rs2254298 and rs53576) confers a
nominal significant risk for HFA. This result points to
the possibility that these genes play a role in ASD, prob-
ably in combination with additional risk genes that
should be further explored.

Conclusions
In summary, many studies have found associations of
OXTR, HTR2A, and SERT with ASD, but we could not
confirm these with HFA except for a nominal associ-
ation with the HTTLPR polymorphism. Our findings
might be explained by the fact that HFA individuals have
different symptoms from others with ASD and by the
wide heterogeneity in the ASD population. Of interest,
however, a combination of those polymorphisms re-
sulted in nominal significant risk for HFA, pointing to
the importance of a polygenetic rather than monogenetic
context, in which each gene contributes to a very small
fraction of the phenotype. Therefore, we suggest that fu-
ture association studies should look into this aspect and
examine various combinations of risk genes with HFA.
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